
INTRODUCTION

When developing the classification of human
functional states based on a three-factor model of
heart rate variability (HRV) [1], we used the slope of
the regression curve of the heart rate graph (b1). It
was assumed that the parameter b1, which was posi-
tively correlated with the heart rate oscillation period,
could also serve as an index showing how disordered
(chaotic) the heart rate dynamic is. The results of
studies aimed at testing this hypothesis are described
here.

We considered heart rate as a complex dynamic
system exhibiting linear (oscillations at various fre-
quencies) and nonlinear dynamics in stationary
short-time series (the sample size was 256 points).

Nonlinear dynamics is divided into chaotic and sto-
chastic processes. In the case of chaotic processes, the
position of the object at any moment of time can be
determined with the use of a mathematical model, pro-
vided the initial conditions are known precisely.
Therefore, they are referred to as determinate-chaos
systems or chaotic systems for short. They are highly
sensitive to predetermined initial conditions, which
can be set only at a finite accuracy both in physical
experiments and in computer simulation. Therefore,
long-term prediction of the behavior of chaotic sys-
tems is impossible.

To visualize the process, the state of the dynamic
system and degree of its organization, a phase space is
used. The variables of the state of the dynamic system
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or components of the vector of its state (e.g., the coor-
dinates and velocity of a body) serve as the coordi-
nates of this multidimensional space. The state of the
system is shown as a point in the phase space, and the
change in the state with time is shown as the move-
ment of the point along the line termed the phase tra-
jectory. The set of points or the subspace in the phase
space that the system’s phase trajectories approach (to
which they are “attracted”) after transitional processes
fade is termed an attractor. In the case of linear dy-
namics, an attractor in the form of a point (the limit
stabilization of the heart rate, when HRV, if any, is
minimal) corresponds to an equilibrium state in the
phase space, and closed phase curves (which are ob-
served in heart graphs during controlled breathing
tests with a set frequency [2]) correspond to a peri-
odic process (or the limit cycle). Points are never re-
peated and trajectories never intersect with one an-
other in the phase space of chaotic systems. However,
both points and trajectories remain within the attrac-
tor, a region of the phase space. These attractors have
been termed strange (or chaotic). In a three-dimen-
sional phase space, a strange attractor appears as a set
of an infinite number of layers or parallel planes, the
distances between some of them approaching infi-
nitely small values [3]. One of the main characteris-

tics of a strange attractor is the sensitivity of its trajec-
tories to initial values. This means that two trajecto-
ries that are close to each other in the phase space at a
certain initial moment of time exponentially diverge
within a short mean time. On the other hand, any at-
tractor has limit sizes; therefore, the exponential di-
vergence of two trajectories cannot be infinite. Sooner
or later, the trajectories will approach each other
again and remain adjacent for some time or even co-
incide. The latter, however, is almost improbable (the
coincidence of trajectories is a rule for the behavior of
linear dynamic systems). The exponential diver-
gence/convergence (also called extension and folding,
respectively) of the phase trajectories of the system
may be estimated with the use of Lyapunov’s indices.
To identify nonlinear dynamic processes, it is suffi-
cient to calculate the largest Lyapunov’s index (� 1),
which shows whether neighboring phase trajectories,
on average, diverge (� 1 > 0, unstable movement) or
converge (� 1 < 0, stable, regular movement) [3]. If, in
the former case, the movement of the dynamic system
is confined to a region of the phase space (the attrac-
tor), the movement is chaotic (a case of determinate
chaos); if it fills the entire phase space, this is a sto-
chastic process. Another quantitative parameter of at-
tractors is the fractal dimension (D), a quantitative
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Fig. 1. A computer model of the Lorenz system strange attractor for one variable in a two-dimensional embedding pseudo-phase
space (x(t), x(t + 5)).
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characteristic of the set of points in the phase space
that shows how densely the points fill the subspace
when their number becomes large [3]. The fractal di-
mensions of attractors are integer for linear processes
and fractional for strange attractors. The fractal di-
mension can be evaluated using the correlation di-
mension index (D2): D2 = 0 in the equilibrium state
and D2 = 1 during periodic movement. For example,
the correlation dimensions of strange attractors of the
Henon map and Lorenz system are D2 = 1.21 and
D2 = 2.05, respectively [4]. To determine the correla-
tion dimension, the continuous trajectory is subjected
to discretization; i.e., it is replaced by a set of N
points {Xi} in the phase space. Then, the correlation
integral (C(r)) is calculated. It is equal to the proba-
bility that the distance between point pairs (|Xi – Xj|)
in the phase space is smaller than r. If r values are
small, the correlation integral increases with r accord-
ing to the power law. The correlation dimension
equals the corresponding mathematical power, which
can be calculated from the slope of the straight line in
the (log C, log r) plot.

The method for evaluating the fractal dimension
described above requires that the dimension of the
phase space (the number of variables necessary for
determining the state of the system) should be known
and all variables of state could be measured. This is
seldom met under actual experimental conditions,
where it is possible to trace and measure the evolution
of only one variable of state with time. Takens [5]
suggested a solution to this problem and Grassberger
and Procaccia [4] developed it. The main idea was the
following [3]. If the dimension of the phase space is
unknown, one cannot know how many variables (x(t),
y(t), z(t), ...) are to be measured. Instead, a pseudo-
phase space (or embedding space) is constructed with
the use of the values of one variable taken at intervals,
e.g., (x(t), x(t + T), x(t + 2T), ...).

Figure 1 shows an example of the computer sim-
ulation of the strange attractor of the Lorenz system
based on one variable in a two-dimensional embed-
ding pseudo-phase space. To determine the correla-
tion dimension, we use sampling measurement x(t) to
construct an embedding space with a constantly in-
creasing dimension (m) until the index D2(m) reaches
its asymptotic value (“saturation”), which is taken to
be equal to D2.

Figure 2 shows the plots of correlation dimen-
sion D2 as a function of the dimension of the

embedding pseudo-phase space m (D2(m)) for differ-
ent models of time series. As expected, the correlation
dimension obtained by constructing an embedding
pseudo-phase space is 1.0 in the case of harmonic os-
cillations (periodic movement), and D2 = 1.21 for the
strange attractor (the Henon map, determinate chaos).
If a Gaussian noise (a stochastic process) is simulated,
the increase in embedding space dimension does not
lead to the “saturation” of the correlation dimension
index (Fig. 2). Numerous studies yielded similar re-
sults [6–9]. This is so because a stochastic system
(random noise) is described by a (theoretically) infi-
nite number of independent variables, and an increase
in the dimension of the embedding space (m) leads to
a monotonic increase in the D2(m) index. If real time
series are analyzed, the observed pattern indicates that
either a stochastic process occurs or the state of the
system is determined by a larger number of parame-
ters. To draw a more definite conclusion, longer time
series should be used in this case. The addition of
noise to harmonic oscillations leads to an increase in
the correlation dimension, but the effect of D2(m)
“saturation” with increasing the embedding pseudo-
phase space is retained (Fig. 2). These relationships
are analyzed in detail in [9].

In our studies on heart rate dynamics, a substan-
tial restriction is imposed on the use of the correlation
dimension parameter–-the time series is too small
(256 points) for estimating D2. According to [10], for
calculating D2 by the method of embedding pseudo-
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Fig. 2. Correlation dimension (D2(m)) as a function of the
dimension of the embedding pseudo-phase space (m) for
different models of the time series: (1) harmonic oscilla-
tions; (2) Henon map; (3) harmonic oscillations +
Gaussian noise; (4) Gaussian noise.
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phase space, the size of the time series should be
� � 102 + 0.4D, where D is the fractal dimension of the
attractor. The presence of noise in the heart rate leads
to an increase in the fractal dimension of the attractor
and, hence, in the size of the time series required for
precise estimation of the correlation dimension. How-
ever, preliminary studies demonstrated that different
functional states of humans are characterized by dif-
ferent deviations of the plot of the correlation dimen-
sion D2(m) versus the dimension of the embedding
pseudo-phase space (m) from the diagonal (m, m). For
example, the more relaxed is the subject, the closer
the correlation dimension plot approaches the diago-
nal (Fig. 3, curve 1). If the subject is in neurotic ex-
citement, the plot of the correlation dimension farther
diverges from the diagonal (Fig. 3, curve 2). Having
analyzed preliminary data, we chose to estimate the
intensity of the stochastic process in heart rate dynam-
ics on the basis of the mean sum of squared deviations
of the D2(m vs. m plot from the diagonal:

sD
D m m

N
2

2
2

� �� [ ( ) ]
, (1)

where N is the maximum embedding dimension used
for estimating D2.

If our hypothesis is true, and the parameter b1

reflects the degree of chaos (indeterminateness) in
heart rate, then a positive association must exist be-
tween b1 and sD2. To test our hypothesis, however,
first we had to determine whether it is possible to use
the sD2 parameter for estimating the intensity of noise

(a stochastic process) in the heart rate dynamics in
short-time series.

EXPERIMENTAL

Heart rate records were obtained in the course of
examination of nuclear power station personnel in the
Laboratory of Psychophysiological Support of the
Novovoronezh Training Center for Nuclear Power
Station Personnel (LPPS NTC). The recording of nor-
mal cardiac sinus cycles of the electrocardiogram and
the subsequent isolation of R–R intervals (in millisec-
onds) were performed by means of the RITMON-1
and Varikard-1.51 three-channel software –hardware
complexes (discretization frequency, 500 Hz). The
MABP.DBase-HRV software developed in the LPPS
NTC was used to store R–R intervals, edit them (cor-
rect artifacts and extrasystoles in the rhythmogram),
and calculate the parameters of HRV. Averaged pa-
rameters of “sliding” stationary samples of 256 R–R
intervals with a step of 10 R–R intervals were used
for analysis. The nonparametric Wald–Wolfowitz
method [11] was used to confirm that the samples
were stationary. The Statistica for Windows 6.0 soft-
ware was used for statistical analysis.

The results of the examination were used to
form a reference group (RG) of 231 healthy men
(mean age, 34.0 years; standard deviation (SD), 7.8
years), which was confirmed to be stationary. The
heart rate was recorded for 10 min in the morning, the
subject being in a sitting position. In addition, four
“functional” groups of 32 men each were formed on
the basis of this examination: FG1, the normal state
(age, 32.1 years; SD = 5.8); FG2, mental stress during
an attention test (age, 28.4 years; SD = 4.8); FG4,
neurotic excitement in subjects waiting for the atten-
tion test to begin (age, 35.2 years; SD = 7.6); and
FG4, fatigue and decline in functional reserves (age,
31.1; SD = .8). The heart rate was always recorded in
the morning; the subjects were in a sitting position
during the procedure. The duration of recording was
10 min in groups FG1, FG4 (in the resting state), and
FG3 (subjects awaiting the start of a psychological
test); for FG2 (in the course of psychological testing),
the duration depended on the duration of the test. The
third task (switching attention) of the Schulte–Gorbov
test [12] was used as a mental load (a computerized
variant of this method was specially developed in the
LPPS NTC). FG3 was characterized by increased
neurotic scores on MMPI scales (F.B. Berezin’s
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Fig. 3. Correlation dimension (D2(m)) as a function of the
dimension of the embedding pseudo-phase space (m) of
the heart rate time series for different functional states:
(1) normal state at rest; (2) neurotic excitement.
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variant), difficulty in sitting quietly and motionlessly
before the Schulte–Gorbov test, and general excite-
ment and disorganization during the psychophysio-
logical examination. Asthenia (FG4) was diagnosed
in the cases of decreased productivity, impaired mem-
ory and attention during psychophysiological testing,
and complaints of fatigue. All subjects that had no
neurotic or asthenic symptoms were assigned to the
normal group (FG1).

Two groups were formed according to the re-
sults of controlled breathing tests. The first group
(CBG1) comprised the results of tests performed in
the LPPS NTC. The tests were performed in the
morning, the subjects being in the state of rest in a sit-
ting position. The sample of subjects consisted of
58 men (age, 32.4 years; SD = 4.5). The subjects
evenly breathed for 5 min at a respiration rate of
0.1 Hz (the rate was monitored using a stopwatch).
The second group (CBG2) comprised data on seven
volunteers (PhysioBank Archives) who breathed at a
rate of 0.25 Hz in a lying position for 10 min, the res-
piration rate being set with a metronome (http://www.
physionet.org/physiobank/database/meditation/data/
metron/). The selected data were stationary and dis-
played a distinct spectral peak at the respiration rate
of controlled breathing.

The MABP-Chaos software was developed in
the LPPS NTC specially for analyzing the nonlinear
heart rate dynamics. This software permits simulation
of a wide spectrum of linear and nonlinear processes
and calculation of parameters for both model data and
actual heart rate time series. To calculate the correla-
tion integral (delay, 1; window size, 80), we used the
algorithm proposed by M.T. Rosenstein (http://www.
physionet.org/physiotools/lyapunov/11d2/1d2.c). The
correlation dimension was calculated as the mean
slope of the plot (log C, log r). In addition, Rosen-
stein’s algorithm was used to calculate the highest
Lyapunov’s exponent (� 1). Rosenstein’s study [13]
presents a detailed substantiation of the use of this al-
gorithm for estimating � 1 in short-time series. The
sD2 value was calculated by Eq. (1) at N = 10.

Regarding HRV parameters, we used the stan-
dard deviation of normal (N–N) intervals (SDNN)
(N–N intervals are the R–R intervals between QRS
complexes of normal sinus cycles without artifacts or
extrasystoles) and the slope (b1) of the regression
curve of the heart rate graph (N–Nn, N–Nn+1) [1]. The
heart rate graph is an example of a two-dimensional

embedding pseudo-phase space plotted for the time
series of N–N intervals.

We used the model of superimposing “Gaussian
noise” (GN) on harmonic oscillations (such use sub-
stantiated in [14]). Harmonic oscillations with super-
imposed noise were simulated using the formula

Amcos(2� f) + Amsin(2� f) + M + RandG(0, SDGN),

where Am is the wave amplitude, f is the oscillation
frequency, M is the mean value, and RandG is a func-
tion from the Delphi-5 package for generating GN
(0 is the mean value and SDGN is the standard devia-
tion). The period of the harmonic oscillations (1/f)
varied from 3 to 256, SDGN varied from 1 to 40,
Am = 20. For each level of GN (SDGN), we simulated
100 samples, which were used to calculate averaged
parameters to be used in subsequent analysis.

RESULTS AND DISCUSSION

As expected, the simulation of harmonic oscilla-
tions with superimposed GN demonstrated an inverse
dependence of sD2 on the GN level (Fig. 4): the
higher the noise level in the signal (SDGN), the closer
the correlation dimensions to the diagonal of the
D2(m) plot. Nonlinear regression analysis yielded the
following dependence of sD2 on the noise level:
sD2 = –30 + 51(SDGN)–0.1. This relationship accounted
for 98.23% of the variance (R = 0.9911, p < 0.001). It
is important that sD2 was not related to the frequency
of the harmonic oscillations. In addition, we analyzed
the relationship of sD2 with the oscillation amplitude.
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Fig. 4. The sD2 index at different levels of “Gaussian
noise” (SDGN) in harmonic oscillations (Am = 20).



It was assumed that sD2 reflected the ratio of the noise
to the osci l la t ion ampli tude (nSDG N% =
= 100SDGN/Am), rather than its absolute value. Then,
according to the results of nonlinear regression analy-
sis, the relative level of GN could be expressed as

nSD
sD

GN %
.

.

.

�
�

�
	


�
�


100
18 665

117712

5 320

. (2)

This relationship accounted for 91.60% of the
variance (R = 0.9572, p < 0.001). To confirm the hy-
pothesis that sD2 was related to the relative noise
level, we simulated the following harmonic oscilla-
tions: the amplitude varied from 2 to 20, SDGN varied
from 1 to 40 (the data were averaged over 100 sam-
ples), and the oscillation period had a fixed value of
16. The following linear relationship between the
starting (nSDGNs% � 150) and calculated (nSDGNc%)
relative levels of GN was obtained: nSDGNs% =
= 0.5126 + 1.0925nSDGNc% (R = 0.9750, p < 0.001).
This showed that the values of the studied parameters
significantly coincided and confirmed the hypothesis
on the relationship between sD2 and the GN relative
to the amplitude of the original signal. Similar results
were obtained when harmonic oscillations with peri-
ods of 8 and 32 were simulated.

Analysis of the b1 parameter calculated for the
graphs of harmonic oscillations with superimposed
GN confirmed the complex nonlinear dependence of
the slope of the graph regression curve on both the

oscillation frequency and the noise level (the relation-
ship was negative in both cases). A simplified model
of linear regression analysis yielded the following
Beta coefficients (reflecting the relative contributions
of independent variables to the prediction of the de-
pendent variable): Beta = –0.60; for SDGN, Beta =
–0.72 (R = 0.941, p < 0.001). The dependence of b1

on sD2 may be presented in the following general
form: b1 = P0 + P1sDP

2
3 (the equation coefficients P0,

P1, and P3 depending on the harmonic oscillation fre-
quency). For an oscillation period of 256, nonlinear
regression analysis yielded the following equation:
b1 = 1.80 – 4.971sD2–0.675. This relationship ac-
counted for 99.53% of the variance (R = 0.0076,
p < 0.001).

For parameters b1 and sD2 calculated from the
results of heart rate recording in the reference group
(Fig. 5), we obtained a significant relationship:
r = 0.789, p < 0.001 (b1 increased with an increase in
sD2 reflecting the relative noise level in the original
signal; however, the dependence was nonlinear). As
evident from Fig. 5, all values of b1 as a function of
sD2 fell either below the curve calculated for har-
monic oscillations with superimposed GN and a pe-
riod of 256 (the “limit” period of the wave discernible
by spectral analysis in a sample of 256 runs) or ap-
proximately on this curve. Note that this relationship
was also found for groups of subjects in different
functional states and subjects performing controlled-
breathing tests. In our opinion, this is additional evi-
dence that linear (periodic) and nonlinear (stochastic)
dynamics form the basis of heart rate dynamics in
short-time series. The “limit curve” is the boundary
for all points of the plot of b1 as a function of sD2 at
various oscillation periods and noise levels. The table
shows the mean values and standard deviations of the
parameters of HRV nonlinear dynamics for the refer-
ence group (RG). Note that the values of the highest
Lyapunov’s exponent (� 1) were higher than zero for
all groups studied. This indicates that the dynamic
system (cardiac rhythm) is in an unstable state, which
may be related to either determinate chaos or stochas-
tic process.

Now let us consider controlled breathing tests and
compare the obtained results (table) for two groups
(CBG1 and CBG2) where the subjects breathed at rate
of 0.1 and 0.25 Hz, respectively. In the spectral den-
sity plot, CBG1 was characterized by a peak at a fre-
quency of 0.099 Hz (SD = 0.005); and CBG2, by a
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Fig. 5. The slope of the heart rate graph regression curve
(b1) relative to the sD2 for the reference group. The solid
line shows the dependence of b1 on sD2 calculated for
harmonic oscillations at different levels of “Gaussian
noise” and a period of 256 (Am = 20).



peak at 0.232 Hz (SD = 0.020). To calculate spectral
parameters without preliminarily transforming the
original set of R–R intervals into an equidistant series,
we corrected the frequency peaks on the basis of the
average R–R interval [15]. The coefficient of correla-
tion between b1 and sD2 was 0.839 (p < 0.001); how-
ever, the dependence remained nonlinear. To test the
hypothesis on the differences between parameters for
CBG1 and CBG2, we used the nonparametric Mann–
Whitney U test and Kolmogorov–Smirnov � test for
unrelated samples. The two groups significantly dif-
fered (p < 0.001) in all parameters except SDNN. The
relative noise level (nSDGN%) considerably increased
with increasing respiration rate (from 17.46 to 62.01%
at rates of 0.1 and 0.25 Hz, respectively).

An important question arises as to how largely
the changes in nSDGN% were determined by the noise
level, rather than the amplitude of heart rate oscilla-
tions. Earlier [16], it was found that the amplitude of
respiratory waves estimated by means of spectral
analysis increased as the respiration rate decreased.
Our results confirm this finding. We estimated the
maximum spectral density of respiratory peaks at dif-
ferent respiration rates. The mean maximum spectral
densities of respiratory peaks in CBG1 and CBG2
were 110 622 ms2 (SD = 28 448) and 296 959 ms2

(SD = 54 042), respectively. Both U and � tests
showed a significant difference between these values
(p < 0.001). To estimate the absolute noise levels in
heart rate dynamics, we used the following simplified

formula: SDNN 2 = SDGN
2 + Am2. The total oscillation

amplitude can be calculated as Am = SDGN/nSDGN. As
a result, we obtain the following equation for the ab-
solute GN level:

SD
SDNNnSD

nSD
GN

GN

GN

�
�( ) ,2 0 51

. (3)

The table shows the mean GN levels (in stan-
dard deviation units, ms) for different groups. CBG1
and CBG2 significantly differ in SDGN according to
the U and � tests (p < 0.001). The mean proportion of
SDGN in the total HRV (100SDGN/SDNN) was 49.50%
for the subjects that breathed at a rate of 0.25 Hz
(CBG2) and 17.10% for CBG1. Thus, the results con-
firmed that the increase in the relative noise level with
an increase in respiration rate was accounted for not
only by a decrease in the amplitude of respiratory
waves, but also by an increase in amplitude of the
noise itself. According to our data, controlled breath-
ing at a rate of 0.1 Hz is characterized by a signifi-
cantly higher b1 (according to the U and � tests,
p < 0.001), which is determined by not only a lower
respiration rate, but also a lower intensity of stochas-
tic processes (noise) in the heart rate dynamics. The
increase in the noise level against the background of a
decreasing respiratory wave amplitude with an in-
crease in respiration rate explains why the total HRV
(SDNN) changes only slightly.

In conclusion, let us consider the results of the
comparison between the four functional groups with
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Nonlinear dynamics and HRV parameters (the mean and SD) for different groups

Parameter � 1 b1 sD2 nSDGN% SDGN SDNN

RG
0.147

(0.023)
0.665

(0.180)
11.14
(1.880)

38.00
(19.32)

16.54
(11.64)

47.98
(21.72)

CBG1
0.150

(0.021)
0.832

(0.060)
14.35
(1.295)

17.46
(5.22)

11.43
(3.26)

66.84
(7.15)

CBG2
0.116

(0.009)
0.247

(0.247)
8.89

(1.485)
62.91

(24.44)
29.24
(9.14)

59.07
(17.96)

FG1
0.135

(0.014)
0.368

(0.192)
8.28

(1.374)
75.85

(36.85)
29.24

(11.05)
51.46

(12.49)

FG2
0.141

(0.025)
0.746

(0.117)
11.60
(2.470)

35.59
(18.40)

4.18
(1.99)

13.11
(2.94)

FG3
0.185

(0.020)
0.872

(0.071)
14.33
(1.430)

17.73
(5.85)

11.11
(3.71)

65.44
(18.69)

FG4
0.133

(0.015)
0.520

(0.103)
8.86

(1.435)
63.31

(22.32)
11.10
(3.08)

21.56
(3.04)



respect to the nonlinear dynamics and HRV (table).
FG1 (the normal state) and FG4 (fatigue) did not dif-
fer significantly from each other in the relative noise
level parameters (sD2 and nSDGN%) according to the
U or � tests (p < 0.11). As in the case of controlled
breathing tests, we estimated the absolute noise level
in the heart rate dynamics for the functional states
studied, which allowed us to determine the patterns of
stochastic processes in the state of fatigue more accu-
rately. As the working capacity decreases and a sub-
ject becomes to feel tired, the tone of the vagus nerve
estimated by SDGN is significantly decreased
(p < 0.001 for both U and � tests). This is confirmed
by the conclusions of our earlier studies [17], where
the total HRV was decreased (which is characteristic
of fatigue), while the relative activity of the parasym-
pathetic nervous system (as estimated by nSDGN%)
remained unchanged, against the background of a
general decrease in the autonomic nervous system
tone (the proportion of SDGN in the total HRV in the
normal state at rest and during fatigue was 56.82 and
51.48%, respectively). Note the absence of significant
differences between CBG2, FG1, and FG4 with re-
spect to the relative noise level (as well as the SDGN to
SDNN ratio), while the SDNN and SDGN were consid-
erably decreased in the state of fatigue (p < 0.001 for
both U and � tests). The significant difference be-
tween FG1 and FG4 in b1 (p < 0.001 for the U test
and p < 0.025 for the � test) show that, whereas the
difference in the relative noise level in heart rate dy-
namics was small, fatigue was accompanied by an in-
crease in the oscillations at lower frequencies (which
was reflected by the increase in b1). The b1 values
were the lowest in CBG2: breathing control at a fixed
frequency (0.035 Hz) determined not only a high rela-
tive noise level, but also a complete domination of
high-frequency oscillations in the heart rate. FG3
(stress) and FG1 (the normal state) significantly dif-
fered from each other in all parameters (p < 0.001 for
both U and � tests). Mental concentration on a prob-
lem may both decrease the relative noise level in heart
rate dynamics (a decrease in the vagus tone) and in-
crease the activity of the sympathetic nervous system,
which is expressed in an increase in low-frequency
oscillations. In our study, the strongest effect of this
process was a decrease in absolute noise level, which
confirmed that the vagus nerve had a weak effect in
the state of a high mental load (the proportion of
SDGN in the total HRV in stress was 31.88%). All this
is reflected in the increase in b1 and a decrease in the

total HRV. During neurotic excitement (FG2), the rel-
ative noise level was significantly lower than during
mental stress, the total HRV remaining high. The esti-
mate of the absolute noise level confirmed that the
vagus tone was decreased during neurotic excitement,
and the high b1 values indicated that the increase in
the total HRV was primarily determined by an in-
crease in the amplitude of low-frequency oscillations
(the proportion of SDGN in the total HRV in the state
of neurotic excitement was 16.98%). The data on the
neurotic excitement group did not differ significantly
from the results of the test of controlled breathing at a
rate of 0.1 Hz (p > 0.1 for both U and � tests). Only b1

was significantly higher (p < 0.001) in FG3, which
confirms the presence of waves with a frequency
lower than 0.1 Hz in the heart rate dynamics of neu-
rotically excited subjects [17]. There is evidence [18]
that nonlinear processes in heart rate dynamics are
mainly mediated by the vagus influence. The results
of our comparison of four functional groups with re-
spect to the parameters of nonlinear dynamics and
HRV confirm this hypothesis. Our data also lead to
the conclusion that, contrary to the opinion of some re-
searchers [12], stochastic processes similar to “Gaussi-
an noise,” rather than determinate chaos, underlie the
nonlinear heart rate dynamics in stationary short-time
series.

CONCLUSIONS

(1) The results of studies using simulated data
(harmonic oscillations with superimposed GN) and
actual time series of heart rate lead to the conclusion
that the parameter sD2 (the mean sum of squared de-
viations of the plot of correlation dimension (D2(m))
as a function of the dimension of the embedding
pseudo-phase space (m) from the diagonal (m, m)) can
be used for estimating the intensity of stochastic pro-
cesses in heart rate dynamics in small samples
(256 R–R intervals).

(2) According to the results obtained, sD2 re-
flects the ratio of the noise level to the amplitude of
heart rate periodic oscillations, rather than the abso-
lute noise level in the original signal. Equations for
calculating the relative and absolute noise levels in
heart rate dynamics (Eqs. (2) and (3), respectively)
have been proposed.

(3) It has been established that the slope of the
heart rate graph regression (b1) reflects both linear
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(periodic oscillations) and nonlinear (stochastic noise)
processes in heart rate dynamics in stationary short-
time series. Two main parameters, the period of heart
rate oscillations and the relative noise level, affect the
b1 value. An increase in the oscillation period (which is
characteristic of the activities of the sympathetic ner-
vous system and central regions of the cerebral cortex)
increases b1, whereas an increase in the relative noise
level (the activity of the vagus nerve) decreases b1.

(4) Analysis of the absolute and relative noise
levels in heart rate dynamics in different functional
sates and during controlled breathing tests has demon-
strated that the increase in the relative noise level in
heart rate dynamics is determined by not only a de-
crease in the respiratory wave amplitude, but also an
increase in the amplitude of the noise itself. The abso-
lute noise level (and, hence, the vagus tone) is de-
creased in the states of neurotic excitement, fatigue
(with the relative noise level remaining unchanged),
and, especially, mental stress (concentration on a
problem). In the states of fatigue and stress, this is ac-
companied by a decrease in the total HRV (SDNN). In
the case of neurotic excitement, an increase in the to-
tal HRV is mainly determined by an increase in the
low-frequency oscillation amplitude, as evidenced by
high b1 values. This accounts for the marked decrease
in the relative noise level in the given state. In the
normal state at rest, both relative and absolute noise
levels are high (a high tone of the vagus nerve): non-
linear (stochastic) processes dominate over linear
ones (periodic oscillations).

(5) The highest Lyapunov’s exponent (� 1) is
higher than zero for all groups studied. This indicates
an unstable state of the heart rate dynamic system,
which may be accounted for by either determinate
chaos or a stochastic process. The results of our stud-
ies allow us to conclude that the total HRV in station-
ary short-time series is composed of a periodic com-
ponent and indeterminate chaos (stochastic noise).
The stochastic noise level, which reflects the vagus
activity, may make a considerable contribution to the
total HRV, as assumed by some authors [20].
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